suere]

ACTS Workshop — LBNL, October 2001

SLEPc: Scalable Library for Eigenvalue
Problem Computations

Jose E. Roman

Departamento de Sistemas Informaticos y Computacion
Universidad Politecnicade Valencia (Spain)

jroman@dsic.upv.es

\ SLEPn\ Problem Definition

o Target problems
— Large sparse eigenvalue problems
— Example: discretization of PDEs

 Types of problems
— Standard: Ax=Ax
— Generalized: Ax=ABXx
— Other (SVD, guadratic, ...) formulated as one of the above

e Methods

— “Direct” methods (QR, Jacobi, etc.) are not appropriate

— Vector iterations
» Single vector iterations (power, inverse iteration, RQI)
» Multiple vector iterations (subspace iteration, block RQI)
* Projection methods (Arnoldi, Lanczos, Jacobi-Davidson)

— Acceleration techniques: spectral transformations

\ SLEPe \ Acceleration

« Convergence rate is critical for good performance
— Clustered eigenvalues are a problem
— Acceleration techniques usually aim at improving separation

* Polynomial filtering
— Chebycheyv, least-squares and other polynomials
— The optimal polynomial is difficult to obtain

e Spectral transformations
— Origin shift: improvement is very limited

— Shift-and-invert: (A-6I)Ix=px
* Very effective technique, widely used
« Also allows to find internal eigenvalues (A-oB)1Bx=ux

— More general transforms: Cayley, rational
— Can be combined with any solution method

| SLEPG | Available Software

« Parallel eigenvalue solvers

— PARPACK (Sorensen, Lehoucq et al)
« Implicitly Restarted Arnoldi/Lanczos method
* Symmetric and honsymmetric
» Real and complex problems

— BLZPACK (Margues)
* Block Lanczos method
» For complex problems use HLZPACK

— PLANSO (Parlett/Wu and Simon)
e Lanczos with partial reorthogonalization

— TRLAN (Wu and Simon)
» Dynamic thick-restart Lanczos algorithm
e Linear systems of equations
— Direct methods: SuperLU, PSPASES, SPOOLES, (PETSc)
— lterative methods: PETSc, Aztec, PIM, Isis++, ...

\ SLEPg \ SLEPc Objectives

e Current situation

— Software for eigenvalue problems available

— Traditional programming model (Fortran, reverse
communication, etc)

— User has to be aware of details of parallelism

— Usually has to be combined with software for the solution of
linear systems of equations

« With SLEPC

— More modern programming paradigm

* Object oriented

 Built-in programming tools: debugging, visualization, etc.

» Details of parallelism hidden in lower abstraction levels
— Very easy to implement an eigensolver

« The user still has control over all the details of solution method
— All the functionality of PETSc available

\ SLEPe \ What I1s SLEPc?

« SLEPc: Scalable Library for Eigenvalue Problem Computations

 Anew library
— Aim: solution of large scale sparse eigenvalue problems

Can be considered an extension of PETSc
Developed by HPNC group in Valencia (Spain)

* Properties

Freely available (and supported) research code

Hyperlinked documentation and manual pages for all routines
Many tutorial-style examples

(Support via email)

Usable from Fortran 77/90, C, and C++

Portable to any parallel system supporting MPI

Good parallel performance

Extensible

.. the same way as PETSc

| SLEPG |

Numerical Components

PETSc SLEPc
Nonlinear Solvers Time Steppers Eigensolvers
Newton-based M ethods : Power RQI S Arnoldi
Other Euler Baét}/érard PS;UdOi-I;:me Other
Line Search | Trust Region ePping Lanczos | Arpack | Blzpack | Other
Krylov Subspace Methods Spectral Transform
GMRES | CG CGS | Bi-CG-STAB | TFQMR |Richardson| Chebychev | Other Shift Shift-and-invert Other
Preconditioners
Additive Block . LU
Schwartz Jacobi et ILU IcC (Sequentia only) Qlinze
Matrices
Compressed Blocked Compressed Block
Sparse Row Sparse Row Diagonal Dense Other
(A1J) (BAIJ) (BDIAG)
Index Sets
Vectors , _ .
Indices Block Indices Stride Other

\ SLEPg \ SLEPc objects (1)

EPS: Eigenvalue Problem Solver

e Solvers for
— Standard and generalized
— Real and complex arithmetic
— Hermitian and non-Hermitian

 Main functions

— EPSCreate, EPSDestroy, EPSView, EPSSetOperators,
EPSSetInitialVector, EPSSetUp, EPSSolve

e The user can
— Select a solver

— Specify various parameters:
* nev: number of eigenvalues
» ncv: dimension of the subspace (number of basis vectors)
» tolerance, max iterations, portion of the spectrum
» orthogonalization technique (CGS, MGS, IR, DGKS, other)
» whether to compute eigenvectors or not

— Via procedural or command line interface

\ SLEPg | SLEPc objects (2)

ST: Spectral Transformation
 How it works
— Solvers apply the “operator” to a vector

— The “operator” is different Standard | Generalized
depending on the type of ST none A B-1A
— Linear systems are handled shift A+Gl B-lA4cl

— After convergence, eigenvalues
have to be transformed back appropriately

e Main functions
— STCreate, STDestroy, STView, STSetUp, STApply

e The user can

— Select the type of transformation
 Type shell also available for user-defined transformations

— Specify various parameters: the value of the shift (o)
— In sinvert also the linear system solver and corresponding options

| SLEPG | Basic Eigensolver Code

EPS eps; /* eigensolver context */
Mat A; /* matrix */

Vec *x; /* basis wvectors */
Scalar *kr, *ki; /* eigenvalues */

MatCreate (MPI COMM WORLD,n,n,N,N, &3) ;
MatSetFromOptions (A7) ;

/* assemble matrix */

EPSCreate (MPI COMM WORLD, &eps) ;
EPSSetOperators (eps,A,PETSC NULL) ;
EPSSetFromOptions (eps) ;
EPSSolve (eps, &its) ;
EPSGetConverged (eps, &nconv) ;
EPSGetSolution (eps, &kr, &ki, &x) ;

EPSComputeError (eps, error) ;

suere]

Power Method

exl1l
exl
exl
exl

exl

e rgi

¢ power

—eps_type
-eps_type
—eps_type
—eps_type
—eps_type

— Power method
— Deflation for computing more than one eigenpair

— Combined with shift-and-invert is equivalent to inverse
iteration

— Rayleigh Quotient Iteration
— Only implemented for one eigenpair

o Examples

power -eps tol le-8 -eps monitor
power -—-eps nev 6

power -st type shift -st shift 0.5
power -st type sinvert -st shift 2000

rgi -eps monitor values

\ SLEI'1=| Subspace lteration

e subspace

— Subspace lteration method
— Non-Hermitian projection
— Deflation by locking converged eigenpairs

 Examples

exl -eps type subspace -eps nev 1 -eps ncv 12

exl -eps type subspace -eps mgs orthog

exl -eps type subspace -eps plot eigs -draw pause 10

exl -eps type subspace -st type sinvert -st shift 1
-sinv_ksp type gmres -sinv pc type sor
-sinv_pc sor omega 1.2

exl -eps type subspace -none ksp type cg
-none pc_type jacobl -none ksp tol le-5

exl -eps type subspace -eps view

| SLEPG | Arnoldi, Lanczos and Wrappers

e arnoldi

— Arnoldi method
— EXxplicit restart and deflation

e lanczos

— (Hermitian) Lanczos method
— Full reorthogonalization

 Wrappers

— arpack, blzpack, planso, trlan

— Specific options for some of them,
€.0. -eps_blzpack block size

— Also 1apack for validation purposes

— When installing SLEPc the user specifies which of this
packages are available

suere]

Examples

1 exl.c
ex1f.F
ex2.c
ex3.c
ex4.c
exs.c
ex6f.F
ex’.c
ex8.c
ex9.c

R O F O FP FP NP ®

Category Filename Description

1-D Laplacian, standard symmetric eigenproblem
Fortran equivalent of ex1.c

2-D Laplacian, standard symmetric eigenproblem
2-D Laplacian, matrix-free version

Matrix loaded from a file, standard problem
Markov model of a random walk in a triangular grid
Ising model for ferromagnetic materials

Matrices loaded from a file, generalized problem
Grcar matrix, Singular Value Decomposition
Brusselator model, standard nonsymetric w/blocks

Also tests with NEP collection (math.nist.gov/MatrixMarket)

\ SLEPn\ The Future

First version:
— Wil probably be released in Nov or Dec 2001

— Version numbering will probably be consistent with PETSc
e Therefore: SLEPc 2.1.0

— Will contain
» Power, Subspace iteration, RQI, Arnoldi, Lanczos
» Also wrappers to Arpack, Blzpack, Planso, Trlan, Lapack
« Shift and shift-and-invert spectral transformations

What is next?
— Close collaboration with PETSc team
— More methods (Non-Hermitial Lanczos, Jacobi-Davidson, ...
— Other spectral transformations or acceleration techniques
— Further testing with several case studies

Open to external collaboration

— Researchers who want to experiment with new methods
— Users with interesting applications

Lambda Modes

Nuclear reactor analysis

The Lambda Modes equation
Modeling the reactor

Solution strategy
Implementation with SLEPc
Preliminary performance results

\ SLEPe \ Introduction

Context: Security analysis in nuclear reactors

The main aim is to improve security

Also reduction of production costs can be pursued
Engineering companies demand tools for detailed analysis
This analysis has evolved to 3D methodologies

Study of Nuclear Reactors

Where neutrons are located Criticality of the reactor

(Neutron Diffusion Equation)

Steady Analysis Transient Analysis

(Lambda Modes)

Lambda Modes analysis

eigenvalues and eigenvectors of time-independent neutron
diffusion equation of a nuclear reactor

\ SLEPg \ Criticality

Criticality: depends on how many of the free neutrons from each
fission, on average, hits another U-235 nucleus and causes it to

split:

 Exactly one: the mass is critical
— The mass will exist at a stable temperature

 Less than one: the mass is subcritical
— Eventually, induced fission will end in the mass

 More than one: the mass is supercritical

— It will heat up

— In a nuclear reactor, the reactor core needs to be slightly
supercritical so that plant operators can raise and lower the
temperature of the reactor

— The control rods give the operators a way to absorb free neutrons
so that the reactor can be maintained at a critical level

\ SLEPgJ The Physical Problem

 Lambda Modes equation
— Derived from time-independent neutron diffusion equation

— Multigroup approach: neutrons are grouped in energy
Intervals. With two energy groups (fast and thermal):

1
Ld =—Mao
¢ P 1)
- —~V(D,V)+Z_+2, 0 |
| -3, ~V(DV)+2,,
M :_Vlzfl V22f2_ ¢| :_¢fi_
i 0 0 | _¢ti_

\ smﬂ The Algebraic Problem

« Discretization: Nodal Collocation, with Legendre
polynomials
L - M
v, =My
A
I—]_]_ O WL _i Mll M12 WJ-‘
L L21 L22__W2i_ ﬂ“. L 0 0 __Wzi_
 Reduced size eigenproblem
AWL. = 219”11-
A :Lll_l(My + My, Lzz_l L)

| SLEPG | Nodalization
L 3
5 L2
L3
73
2D Case 3D Case

All axial planes are
considered equal

Yasymmetry

Different axial planes
No symmetries

Other details such as
control rods

Control Rods

1 [6] (1
- s] 5-7-5] 3 7 Bank | No. of rods Purpose
3 |5] [4] [4] [5] [3 1 8 Security
15846_2_2_26485 1 2 8 Security
6 - 5T 7 T3 7 6 3 8 Security
5 i 2 [2 4 5 4 8 Security
1| |8] [6] [2] |6] [8] |1 5 12 Regulation
3| |5 (4| |4]| |5| |3 :
R IEL AR IRAL, 6 12 Regulat!on
gl Bl 5 3 7 9 Regulation
1] ﬁ 1 8 8 APSR

(e.g. bank 7 inserted 20%)

The user can specify the position of each control rod bank

\ smﬂ Analysis of Results

« Physical interpretation of results
— Eigenvalues inform about criticality of the reactor
— Eigenvectors inform about distribution of power density

normal conditions abnormal conditions

\ SLEPn\ Nonzero Pattern (2D)

L., Ly, : symmetric matrices, (almost always) positive definite
M;., My,, L,, : diagonal matrices

\ SLEI'e] Solution Strategy

Large eigenvalue problem

— Size in 3D models range from 50000 to 1 million depending on
degree of polynomial

— “Sparse” methods are preferred
Several approaches

— Full eigensystem Ay, = Ay,
— Reduced generalized eigensystem A=L, (M, +M,L,"L,)

— Reduced standard eigensystem

In the latter case, matrix vector products are done without
forming the matrix explicitly

W,=M;,X
W,=L,;X
y=AX » Solve L,,W5=wW,
W,=W;+M oW,
Solve L, y=w,

| SLEPG | Main Program

#include "slepceps.h"

int main(int argc,char** argv)

{
SlepcInitialize (&argc, &argv, (char*)0,help) ;
LambdaGetOptions (&reac, &dpol) ;
MatLambdaCreate (reac,dpol, &A) ;
EPSCreate (comm, &eps) ;
EPSSetOperators (eps,A, PETSC NULL) ;
EPSSetFromOptions (eps) ;
EPSSolve (eps, &its) ;
EPSGetConverged (eps, &nconv) ;
EPSGetSolution (eps, &kr, &ki, &x) ;
EPSComputeError (eps, error) ;
MatDestroy (2) ;

EPSDestroy (eps) ;
SlepcFinalize() ;

\ SLEPe \ Matrix Generation

}

{

typedef struct {

SLES L11, L22;
Vec w, L21, M11l, M12;
CTX LAMBDA;

int MatLambdaCreate (Reactor reac,int dpol,Mat *A)

CTX LAMBDA *ctx;

/* generate M with appropriate ordering */
SLESCreate (comm, &ctx->L11) ; =
SLESSetOperators (ctx->L11,M,M, flag) ;
SLESGetKSP (ctx->L11, &ksp) ; CHKERRQ (ierr) ;
KSPSetType (ksp, KSPCG) ; CHKERRQ (ierr) ; >
SLESGetPC (ctx->L11, &pc) ; CHKERRQ (ierr) ; for L22
PCSetType (pc, PCJACOBI) ; CHKERRQ (ierr) ;
SLESSetFromOptions (ctx->L11l) ; CHKERRQ (ierr); /
MatCreateShell(comm, n, n, N, N, (void*)ctx, A);
MatShellSetOperation (*A,MATOP MULT,MatLambda Mult) ;

Repeated

| SLEPG | Matrix-vector Product

{

int MatLambda Mult(Mat A, Vec x, Vec y)

CTX_LAMBDA *ctx;
int its, ierr;

Scalar done = 1.0;

MatShellGetContext(A, (void**)é&ctx);
VecPointwiseMult (ctx->L21, x, ctx->w);
SLESSolve(ctx->L22, ctx->w, y, &its);
VecPointwiseMult (ctx->M12, y, ctx->w);
VecPointwiseMult(ctx->M1l1l, x, vy)
VecAXPY (&done, y, ctx->w);

SLESSolve(ctx->L1l1l, ctx->w, y, &its);

PetscFunctionReturn (0) ;

suere]

Preliminary Performance Results

e Timings in a SGI Origin 2100 system (8 proc)
 NoO renumbering of nodes
* Block size n=83376

p Ty S, E, (%)
1 218.64 1.00 100
2 147.43 1.48 74
4 58.40 3.47 94
6 46.45 4.71 78

 Block size n=208440

p Ty S, E, (%)
1 1464.44 1.00 100
2 905.71 1.62 81
4 479.87 3.05 76
6 327.28 4.47 75

